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SUMMARY 

This report contains an Encke type method for a precise determination of 

the trajectories for thrusting vehiclee. A cloeed form expression for the 

spprmimate trixjeeehry is taken frcm the horn edcticns of the motion of 

a thrusting vehicle in a uniform gravitational field under the action of an 
inertially fixed thrusting vector of constant thrusting magnitude. The 

perturbation deviation from this known solution is integrated using con- 

ventional techniques. 

In addition, the report contains an appraximate solution of the variational 

equations for the thrusting vehicle. A method is described for obtaining 

an approximate solution for the propagation of the covariance matrix of 

the errore in the position and velocity of the vehicle due to random Gaue- 

sian variations in the initial conditions of the state, in the magnitude and 

direction of the thrust, and the time of the onset and termination of the 

thruet. 



AN ENCKE METHOD FOR PRECISION THRUSTING TRAJECTORIES 

The equations of motion of a thrusting vehicle are  given by eqs. (1) and (2) 

where, 

\TI = k = - m c  . 

The direction of the thrust vector, T, is given by some control guidance 

scheme, such as that developed by Battin (Ref. 1) for the APOLLD mis- 

sion. We choose an approximate representation of these equations as 

follows 

9 T .. 0 0 s = - p y  + -  
m 

where So,  To are constant vectors, and 

k m = - -  . 
C 

The solution of these equations is given by 

2 so ( t  -to) 
4- s ( t  -to) s = s o - p 3  2 0 

8 
0 

(3) 

(4) 
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k(t  - ti’ 
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8 = - ~1 ~ ( t  -to) + So - T log (1 - k o  em 
S 0 
0 

k m = m - - ( t - t i )  . 
0 C 

It should be noted that provision is made in this solution for the time of 

thrust initiation, t to be different from the initial time, t . This 

will permit the burning time to be used as an error  parameter in computing 

the variational partial derivatives. 

i’ 0 

The Encke perturbation differentiation equations are  given by 

1 
m 

8 
0 7) + - ( T - T o )  + F . R .. .. .. 

p = R - 5 = - p ( ~ -  
r 8 

0 

The initial conditions for eq. (8) are given by 

P(5) = P(t,) = 0 y 

R(t  ) = S . 
0 0 ’  0 0 

R(t ) = S 

Integrating eq. (a), we m a y  obtain P( t) and P(t) .  The solutions of 

eqs. (1) and (2) are given by 

R = P + S  

R = P + S  

k m = m - - ( t - t i )  . 
0 C 

2 



In order to retain maximum accuracy in the computation of the accelera- 

tion equation, P, it is necessary to compute the difference of cubes by 

the following formula: 

.. 

2 3 so 3a 4- 3a f a P + ( S - S )  

r 

0 
S 

) 9  312 - + :( 
R 0 

3 r 
A _ - -  

S 1 + (1 +a) 3 
S 

3 
0 0 

where 

(P + s + s  ) [P + (S - s )I n 0 a = -  
2 r 

It would be convenient to have a similar expansion for the term T - T . 
Unfortunately, this is not easily derived at and it is necessary to rely 

on a simple machine subtraction for the computation. 

0 

Since the actual thrusting logic will require a variable thrust vector, 

there will arise a point where the approximating T 

approximation. In addition, the truncation e r ror  in integrating P will 

produce numerical errors  in the solution. For both reasons, it is neces- 

sary to rectify the orbit. The recommended procedure is to estimate the 

truncation e r ror  in P and P. Whenever the truncation error  affects the 

least significant portion of S or S, a rectification should be made. The 

following equations serve to rectify the orbit at the time of rectification, 

is no longer a good .. 0 

tr: 

S 0 = Wt,) 

s = R(t$ 

P(t ) = P($) = 0 

0 

r 

T = T($) . 
0 

(12 j 
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A criterion for determining the cut-off time as the required velocity to be 

gained (V ) approachee zero is given below: D 

v = lVDl . d 

For small vd, the cut-off time ie given by 

vd 
t co t 

R'T 
m r  

J 2 + Z  - 2 P - y  2 m 4 r 

If t 
a normal integration step. If io - t is less than a normal integration 

step, we may integrate the equatfons of motion with a Runge-Kutta step 

for a At  given by 

- t is greater than one integration interval, we may proceed with 
co 

At = t - t  
co 
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SOLUTION OF THE VARIATIONAL EQUATIONS 

It is often required to obtain the variation in R and R due to random 

er rors  in the initial conditions of €2 and R as well as errors  in the 

thrust actuation. A procedure is presented for approximating these 

variation6 by considering the partial derivatives of eqs. (5) and (6) with 

respect to the variables So, So, To, k, t and io. 
i 

The partial derivative matrices are listed below with their appropriate 

definitions. 

a) State Transition Matrix 

as r 

- -  as - ( t - t ) I  
a bo 0 

= I  - a s  
a io 

The 6x6 matrix for the variation of the state with respect to the errors  

is given below: in the initial conditions, 
as(t) 
as($)’  
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@ =  
a a h0 

b) The Variation of the State with Respect to the Thrust Direction and 

Magnitude 

k ( t  - t i )  cm a8 C 0 

a 
- -  - -[Io- ti) + L k  - ( t  -ti)] log [l- em 

0 
k 

2 omo k( t-ti 1 
I ]  { To TJ (22) 

C - - [la(t-t,) + L k  - ( t-t,)l log c 1  - em 
k3 0 

k( t-ti 1 
11 C - -  - - - l o g h -  aa  

cm 
0 

k a 

cm 
0 

The 6 x 3  matrix for the variation of the state with respect to the three 

thrust components, , is given by 
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u =  
as - 
a 

c) Thevariation of the State with Reepect to Engine Start and Cut-Off 

For ti t t co 

k( t-ti 1 
3 C - -  

cm ” - - T  l og [ : l -  k o  
0 a ti 

T 1 
k(t-ti) o 

= -  - a s  
a ti 1 cm moCl - 

0 

For t =io 
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THE PROPAGATION OF THE COVARIANCE MA= THROUGH THRUST 

The linear variations of the pooition and velocity vectors may be approxi- 

mated as follows: 

6x = # 6 x  + U6.t + V 6 t  
0 

P(t)  = O P ( t  0 )#* t UE(64, 84*)U* + VE(6t, 6t*)V* 

No correlation between 6x , 6 4 ,  and 8 t  is assumed to exist. 
0 

Following each rectification, Q is returned to the 6 x 6  identity matrix I, 

t becomes ti, $ becomes t r i’ 
becomes the thrust given by the guidance law, T( $ ). The entire process 

is repeated and the covariance matrix P is propagated through the thrust 

burn. 

P($) becomes the new P(t,), and To 
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COMPUTATION OF THE THRUST ACTUATION ERROR MATRIX 

The statistical model that will be used to compute the thrust actuation 

errore  ie described as follows: 

1. The er ror  in thrust magnitude, bk, will be assumed to 

act along the vector T. 

2. The tip-off error, 6x, in pointing the engine will be as- 

8umd to be symmetrically distributed about T. 

With these two assumptions the actuation e r ror  covariance matrix is 

given by 

E(84,64*) = a l I  + a2({To]cTo’ - k21)  

where 

a = (6kf 1 

(33) 

and I ie a 3x3 unit matrix. 
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